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0. Generative Models for Video Generation

Starting Point: Generative models have been widely used in image
generation tasks. As steady progress toward better image generation is
made, it is also important to study the video generation problem.
However, the extension from generating images to generating videos turns
out to be a highly challenging task, although the generated data has just
one more time dimension.
Early methods mostly train a 3D video generation model from scratch, and
explicitly add controls for better generation performance.
We start by introducing early generative models for video generation in 0.1
GANs for Video Generation and 0.2 VAEs for Video Generation.

周添文 Week32 Report 2025.2.27 4 / 76



0. Generative Models for Video Generation

0.1 GANs for Video Generation1

Given a prompt, a LSTM is first utilized to embed the input word
sequence, followed by a LSTM-based encoder to obtain the sentence
representation S .

The generator network G tries to synthesize realistic videos with the
concatenated input of the sentence representation S and random
noise variable z .

1Yingwei Pan, Zhaofan Qiu, Ting Yao, Houqiang Li, and Tao Mei. To create what
you tell: Generating videos from captions. In Proceedings of the 25th ACM international
conference on Multimedia, pp. 1789–1798, 2017.
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0. Generative Models for Video Generation

0.1 GANs for Video Generation

The discriminator network D includes three discriminators to explicitly
control the generation result:

A video discriminator to distinguish real video from synthetic one
and align video with the correct caption
A frame discriminator to determine whether each frame is real/fake
and semantically matched/mismatched with the given caption.
A motion discriminator to exploit temporal coherence between
consecutive frames (by calculating the 2D motion tensor).
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0. Generative Models for Video Generation

0.2 VAEs for Video Generation2

Adapting the 2D VQ-VAE image generation model to 3D video generation
by adding a positional embedding to the discrete token encoded from each
frame.

2Chenfei Wu, Lun Huang et al. Godiva: Generating open-domain videos from natural
descriptions.
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0. Generative Models for Video Generation

0.2 VAEs for Video Generation
Although directly adapting a 2D model to 3D can finish the generation
task, the self-attention (SA) in the VQ-VAE decoder is computational
expensive when dealing with longer sequences.
Hence, the author attempt to adopt a 3D sparse self-attention to reduce
the computation cost when training with a auto-regressive manner.
For each latent token in position (i , j) at the l − th frame, the author
adapt sparsify the attention calculation as following:

where T,R,C denotes temporal, row and column. h
(T )
i ,j ,l , h

(R)
i ,j ,l , h

(C)
i ,j ,l are the

hidden states at step (i , j , l). Then, the three layers are stacked together
to replace the original SA calculation:

周添文 Week32 Report 2025.2.27 8 / 76



1. Early T2V Exploration with Diffusion Models

Starting point: Adapting image generation models to video generation
models.
Main Adaption: Accept 3D input (video sequence), produce 3D output
(with multiple coherent frames), instead of single 2D images.

To achieve such adaption, there should be changes in 1.1 Modeling
Video Data, and 1.2 Adapting 2D Architecture to 3D.
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1. Early T2V Exploration with Diffusion Models

1.1 Modeling Video Data:
Drawing inspiration from 2D image diffusion models, early attempts (e.g.
VDM3) adopt the following method for modeling video data with text
prompt.

3Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi,
and David J.Fleet. Video Diffusion Models. In arXiv:2204.03458, 2022b.
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1. Early T2V Exploration with Diffusion Models

1.2. Adapting 2D UNet Architecture to 3D UNet:
With the change in modeling, the architecture we adopt, i.e. the 2D
Denoising UNet, should also be changed to process 3D data, especially the
Convolution layers and self-attention layers.
1.2.1 Adapting Convolution Layers:
The most straightforward way is to adopt a naive 3D 4 convolution kernel
that convolves across the spatial dimensions as well as the temporal
dimension.

4Du et al., “Learning Spatiotemporal Features with 3D Convolutional Networks,”
ICCV 2015.
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1. Early T2V Exploration with Diffusion Models

1.2.1 Adapting Convolution Layers:
The naive 3D convolution layer is:
1. Computational demanding with increased the number of parameters
computational complexity.
2. Treats spatial and temporal dimensions equally, which may not be
optimal.

Hence, (2+1)D convolution5, namely pseudo 3D convolution, is proposed.

5Du et al., “A Closer Look at Spatiotemporal Convolutions for Action Recognition,”
CVPR 2018.
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1. Early T2V Exploration with Diffusion Models

1.2.1 Adapting Convolution Layers:

The (2+1)D Convolution decomposes the 3D convolution into a 2D spatial
conv and a 1D temporal convolution, hence bringing the following benefits:
1. Reduces the computational cost and number of parameters.
2. Doubles the non-linearity in the model (1 ReLU after each kernel).
3. Enables using pretrained weights from image diffusion models for the
2D spatial conv.
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1. Early T2V Exploration with Diffusion Models

1.2.2 Adapting Self-attention Layers:
The easiest way to adapt self-attention layers is also by simply adding a
temporal dimension to the original 2D self-attention, namely naive 3D
self-attention6, as shown below:

All of the frames (red patches) are included in calculation.
6Gedas et al. Is space-time attention all you need for video understanding. arXiv
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1. Early T2V Exploration with Diffusion Models

1.2.2 Adapting Self-attention Layers:
However, such naive approach unsurprisingly yield a heavy computational
burden. Hence, several decomposing strategies, and sparsifying
strategies (common approach in enhancing attention efficiency) are
proposed.
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1. Early T2V Exploration

1.2.2 Adapting Self-attention Layers:
Strategy 1: Global-Local Attention

Can be viewed as a faster approximation of the naive 3D attention using a
local-global decomposition and a sparsity pattern.
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1. Early T2V Exploration with Diffusion Models

1.2.2 Adapting Self-attention Layers:
Strategy 2: Divided Time-Space Attention

Decompose the naive 3D attention to a spatial and temporal dimension.
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1. Early T2V Exploration

1.2.2 Adapting Self-attention Layers:
Strategy 3: Axial Attention

Decompose the naive 3D attention over time, width and height
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1. Early T2V Exploration with Diffusion Models

1.2.2 Adapting Self-attention Layers:
The decomposition provides computation efficiency and better learning
capacity (more parameters), while too much decomposing might damage
the captured temporal and spatial information.
The divided time-space attention achieves the best balance in this
trade-off.
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1. Early T2V Exploration with Diffusion Models

1.2. Adapting 2D UNet Architecture to 3D:
Hence, VDM proposed a 3D denoising UNet derived from 2D denoising
UNet as shown below.
The 2D convolution layers are adapted to the pseudo 3D convolution, and
a temporal attention layer is inserted after each spatial attention layer to
achieve divide space-time attention.
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1. Early T2V Exploration with Diffusion Models

1.3. Adapting 2D DiT Architecture to 3D:
Another line of work utilize Diffusion Transformer (DiT) framework for
image generation. To adapt the 2D DiT to capture the spatio-temporal
information, we introduce the adaptions to the 2D DiT architecture from
patch embedding, block architecture, and temporal positional embedding.
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1. Early T2V Exploration with Diffusion Models

1.3.1. Video Clip Patch Embedding
Different from the UNet architecture, Transformers can naturally handle
3D input since they accept them as tokens. Now, we consider the patch
embedding mechanism that embed the input frames into tokens. Latte7

attempted 2 ways for the embedding, as shown below.

The embedding is employed in the latent space, only the visualization is in
pixel space.

7Latte: Latent Diffusion Transformer for Video Generation
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1. Early T2V Exploration with Diffusion Models

1.3.1. Video Clip Patch Embedding
After conducting the ablation study on FVD (Video version FID), the
result favors the uniform frame patch embedding strategy, since the
temporal dimension compression might yield temporal information loss in
the input frames.
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1. Early T2V Exploration with Diffusion Models

1.3.2. Injecting Spatio-temporal Information
The author surveyed through several methods to capture the
spatio-temporal information. The primary idea is also to decompose the
spatial and temporal information separately either in a block-wise manner
or an inner-block manner.
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1. Early T2V Exploration with Diffusion Models

1.3.2. Injecting Spatio-temporal Information

Variant 1 decompose the spatial and temporal Transformer in an
interleaved manner. The feature vector is reshaped between each spatial
and temporal transformer.
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1. Early T2V Exploration with Diffusion Models

1.3.2. Injecting Spatio-temporal Information

Apart from Variant 1, the author also proposes 3 variant with different
decomposition strategies (late fusion, inner-block decomposition).
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1. Early T2V Exploration with Diffusion Models

1.3.2. Injecting Spatio-temporal Information
The author also conduct ablation study on the 4 proposed variant, and
Variant 1 yields the best result, showing the superiority of the interleaved
method.
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1. Early T2V Exploration with Diffusion Models

1.3.3. Temporal Positional Embedding
To help the model learn the temporal relationship between frames, an
additional temporal positional embedding is added to the input of the
transformer blocks.
Two ways of embedding are compared, absolute embedding (sin and cos of
different frequencies) and RoPE (rotary positional embedding).
Ablation study shows that absolute embedding achieves better result.
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1. Early T2V Exploration with Diffusion Models

1.3.3. Temporal Positional Embedding
In a nutshell, Latte adopts the best setting of each module in their
ablation study, and formed a DiT based video generation pipeline, which is
similar to the one adopted by Sora8.

8OpenAI, “Sora: Creating video from text.” https://openai.com/sora, 2024.
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2. High-resolution Video Generation

Starting Point: The above method successfully achieves text to video
generation, but it relies heavily on paired text-video data, which is
relatively scarce, since the model is trained from scratch.
Hence, image pretraining techniques are proposed to leverage the
text-to-image models pretrained on large scale paired image dataset.
The two main approaches to utilize pretrained T2I models for video
generation tasks are 2.1 Cascaded Generation, and 2.2 Latent Space
Generation.
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2. High-resolution Video Generation

2.1 Cascaded Generation
Structure: Cascaded generation starts from generating key frames from a
T2V model, and apply Temporal Super Resolution (TSR) and Spatial
Super Resolution (SSR) in an interleaved manner with in a
non-overlapping window. These models can be initialized with pretrained
T2I models, and only require minimal fintuning on video dataset.
Interleaved manner: The interleaved window-based operation provides a
trade-off between the computational efficiency and the temporal coherence
within the generated frames.
A commonly adopted pipeline is shown below:
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2. High-resolution Video Generation

2.1 Cascaded Generation
Common pipeline of cascaded generation:
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2. High-resolution Video Generation

2.1 Cascaded Generation
The main benefit of this cascade generation manner is the ability to
generate long and high resolution video, with pretrained T2I models as
prior knowledge.
Make-a-Video9, as a milestone in cascaded generation, achieves the goal
with the strategies below.

9Singer et al., “Make-A-Video: Text-to-Video Generation without Text-Video
Data,” arXiv 2022.
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2. High-resolution Video Generation

2.1 Cascaded Generation
This framework utilize image pretraining by initializing the decoder Dt

with a frozen pretrained T2I model, which accept CLIP Embedding as
input.
Then, temporal layers (i.e. divided space-time attention, (2+1)D
Convolution) are inserted, and only the temporal layers are finetuned on
minimal video dataset, yielding a spatiotemporal decoder Dt .
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2. High-resolution Video Generation

2.1 Cascaded Generation
The frame interpolation model F is further finetuned on the spatiotemporal
decoder Dt , with the target adjusted to frame interpolation.

While finetuning, the masked video and a binary mask indicating which
frame is masked, is concatenated to the UNet’s input, serving as condition.
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2. High-resolution Video Generation

2.1 Cascaded Generation
Ideally, we should implement the spatial super-resolution with temporal
information as the previous strategies, since super-resolution will result in
hallucination, hence yielding a flickering effect within frames.
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2. High-resolution Video Generation

2.1 Cascaded Generation

However, due to the computational constraints, involving temporal
attention in high resolution space is computational demanding.
To strike such balance, the author implement two super-resolution
models, one SRt

l with temporal information involved, in a lower resolution
space; and one SRh without temporal information, in high resolution space.
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2. High-resolution Video Generation

2.1 Cascaded Generation

In this stage, the author also successfully leverage image pretraining by
pretraining the two SR models on image datasets first, with the task of
super-resolution from downsampled images.
Then, temporal layers are inserted into SRt

l , and are again finetuned on
minimal video data.
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2. High-resolution Video Generation

2.1 Cascaded Generation

In a nutshell, all four networks have successfully involved prior knowledge
via image pretraining, using the above strategies.
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2. High-resolution Video Generation

2.2 Latent Space Generation
Another way to leverage image pretraining is via latent space generation
with finetuning on the pre-trained Latent Diffusion Models (LDM).
A naive way of adapting pretrained LDM for video generation is as
following, which merely involves inserting temporal layers in the pretrained
latent denoising UNet, while finetuning on video dataset. The VAE
encoder and decoder are directly from the image LDM.
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2. High-resolution Video Generation

2.2 Latent Space Generation
Such naive adaption successfully leverage the pretrained LDM, which
achieves our goal of image pretraining, but it still suffers from the problem
below:
1. The VAE decoder is pretrained with text-image pair, hence, directly
adopting the pretrained VAE Decoder will result in flickering artifacts.
2. The VAE compression is only conducted on spatial dimension, but the
redundancy in temporal dimension is not compressed.
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2. High-resolution Video Generation

2.2 Latent Space Generation
MagicVideo10 visualize the flickering artifacts between generated frames of
the naive method, as shown in row 1 and 3 below.

10Zhou, Daquan, et al. ”Magicvideo: Efficient video generation with latent diffusion
models.” arXiv preprint arXiv:2211.11018 (2022).
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2. High-resolution Video Generation

2.2 Latent Space Generation
To mitigate such problem, the author propose a Video VAE decoder, to
substitute the original VAE Decoder. The temporal attention adopted here
is also the divide space-time attention, which we have previously
mentioned in Section 1.2.2.
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2. High-resolution Video Generation

2.2 Latent Space Generation
With the proposed Video VAE decoder, the framework is shown as below:
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2. High-resolution Video Generation

2.2 Latent Space Generation
To deal with the second problem, i.e. to achieve compression on both
temporal dimension and spatial dimension, VideoVAE11 propose a 3D VAE
autoencoder.
Two kinds of settings are explored by the author:

The simultaneous modeling is achieved by replacing the 2D convolution in
image VAE with pseudo (2+1)D convolution, and turning the spatial
attention layer into a spatiotemporal attention layer by inserting temporal
attention. with the same strategy in 1.2.2.

11Xing, Yazhou, et al. ”Large Motion Video Autoencoding with Cross-modal Video
VAE.” arXiv preprint arXiv:2412.17805 (2024).
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2. High-resolution Video Generation

2.2 Latent Space Generation
The sequential modeling process includes first utilizing the image VAE
encoder to compress the input video frame-by-frame . Then learn a
light-weighted temporal autoencoding process to further compress the
temporal redundancy.

The authors find that the sequential spatio-temporal design can better
compress and recover the dynamic of the input video than the
simultaneous design, but is not good at recovering spatial details.
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2. High-resolution Video Generation

2.2 Latent Space Generation
Hence, the solution is to combine the benefits of both approaches.

The input video is first compressed spatially by the Temporal-aware Spatial
Encoder, which is initialized from image VAE, and finetuned with video
data. The adaption is similar to Section 1.2.2.
Then the spatially compressed vector is compressed temporally with a light
weight temporal autoencoder.
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2. High-resolution Video Generation

2.2 Latent Space Generation
Such a design lead to a better compression and reconstruction result for
video VAE, as shown in row 1 and 4 below:
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2. High-resolution Video Generation

2.2 Latent Space Generation
Another commonly adopted 3D VAE autoencoder is proposed by
CogVideoX12 to achieve x4 downsample temporally and x8 spatially.

12CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
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2. High-resolution Video Generation

2.2 Latent Space Generation
This framework train a 3D temporal causal convolution from scratch to
substitute the original 2D convolution in the down/upsample blocks.
Compared to the naive 3D convolution we have proposed in Section 1.2.1,
the temporal dimension is convolved in a causal manner.
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2. High-resolution Video Generation

2.2 Latent Space Generation
The motivation of this causal manner comes from the problem
encountered in temporal convolution, where the future information should
not influence the present or past predictions13, similar to RNNs.

where the convolution result of yt only consider its previous frames y0 to
yt−1.

13An Empirical Evaluation of Generic Convolutional and Recurrent Networks for
Sequence Modeling
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2. High-resolution Video Generation

2.2 Latent Space Generation
Assume the kernel size on temporal dimension is kt , such causal 3D
convolution layer pads with kt − 1 frames before the input and nothing
after, instead of ⌊kt−1

2 ⌋ before and ⌊kt2 ⌋ after. so that the output for each
frame only depends on the previous frames.
With such padding strategy, the first frame is always independent of other
frames, allowing the model to tokenize single images.
Hence enabling the model to realize image-video co-training, which is
proved14 to be an effective strategy in training T2V models.

14Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi,
and David J.Fleet. Video Diffusion Models. In arXiv:2204.03458, 2022b.
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2. High-resolution Video Generation

2.2 Latent Space Generation
According to this padding strategy, assuming the compressed latent has
size (f + 1)× h × w , the input to this 3D temporal causal VAE Encoder
should be (4f + 1)× 8h × 8w
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3. Better Frame-by-frame Consistency

Starting Point: To achieve better frame-by-frame consistency in the
generated image, (nearby) frames in a video clip should be almost the
same in content (background, person’s identity etc.), the main difference
should be the motion within frames.
To enhance frame-by-frame consistency, we introduce 3.1 Noise Prior
Exploration.
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3. Better Frame-by-frame Consistency

3.1 Noise Prior Exploration
Since visual signals in a video can be divided into content and motion,
MoCoGAN15 is a pioneer work to propose that the latent space of GAN
for video generation can be decomposed to a content subspace and a
motion subspace.

15MoCoGAN: Decomposing Motion and Content for Video Generation
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3. Better Frame-by-frame Consistency

3.1 Noise Prior Exploration
Hence, during the sampling process, the once the content latent code is
fixed, the generated video exhibits great temporal coherence among the
frames.
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3. Better Frame-by-frame Consistency

3.1 Noise Prior Exploration
Borrowing such an idea, Video Fusion16 decomposes the Gaussian Noise in
the sampling process of Video Diffusion Model into a base noise and a
residual noise.
The base noise contains the content of the image, so adopting the same
base noise across all the frames ensures consistency in the content among
the frames.
The noise removal task can be solve by subsequently removing the base
noise and the residual noise. Since the base noise is removed, the residual
noise will be lighter, and will be easier to get removed.

16VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation
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3. Better Frame-by-frame Consistency

3.1 Noise Prior Exploration

Base Noise Generator:

In each diffusion step t, the noised latent z ti for the i − th frame can be
written as:

z ti =
√
α̂txi +

√
1− α̂tϵ

t
i (1)

And each frame can be decomposed into a base frame x0 with a residual
∆xi :

xi =
√
λix0 +

√
1− λi∆xi , i = 1, 2, . . . ,N (2)

yielding

z ti =
√
α̂t

(√
λix0 +

√
1− λi∆xi

)
+
√
1− α̂tϵti (3)
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3. Better Frame-by-frame Consistency

3.1 Noise Prior Exploration

Base Noise Generator:

As stated before, the noise can also be decomposed into a base noise and
a residual noise, as below:

ϵti =
√
λib

t
i +

√
1− λi r

t
i bti , r

t
i ∼ N (0, 1) (4)

Substitute Eq.(4) into Eq.(3), we yield:

z ti =
√

λi

(√
α̂tx0 +

√
1− α̂tbti

)
︸ ︷︷ ︸

diffusion of x0

+
√

1− λi

(√
α̂t∆xi +

√
1− α̂tr ti

)
︸ ︷︷ ︸

diffusion of ∆xi

(5)
In this way, x0 in different frames will be noised to the same value.
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3. Better Frame-by-frame Consistency

3.1 Noise Prior Exploration

Base Noise Generator:

Since the base noise bt is shared among all the frames in a same timestep,
we can further write Eq.(5) as:

z ti =
√
α̂txi +

√
1− α̂t

(√
λibt +

√
1− λi r

t
i

)
(6)

Now, if we select a frame as the base frame, e.g. frame i = ⌊N/2⌋, we
yield:

z ti =

{√
α̂tx

i +
√
1− α̂tbt if i = ⌊N/2⌋

√
α̂tx

i +
√
1− α̂t

(√
λibt +

√
1− λi r

t
i

)
if i ̸= ⌊N/2⌋

(7)

Hence, as long as we feed frame x⌊N/2⌋ into any off-the-shelf noise
predicting denoiser zbϕ , we get the base noise bt .
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3. Better Frame-by-frame Consistency

3.1 Noise Prior Exploration

Residual Noise Generator:

After subtracting the base noise from each frame, the residual noise is
much more lighter. Hence, the author train a separate residual noise
estimation network to generate the residual noise r ti for each frame in each
timestep.
Then, the result can be generated with a DDIM sampler.
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4. Image to Video Generation

Except for text, images can also be served as a source of condition for
video generation. The I2V input could be a single image, which is
commonly chosen as first frame, or a short video, which can be seen as a
frame interpolation framework.
Since the image is an additional condition for the model, the modeling
should be altered correspondingly. We now introduce 4.1 Injecting image
condition and 4.2 Enhancing consistency with the condition image.
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4. Image to Video Generation

4.1 Injecting Image Condition
A common approach17 to modeling the I2V problem is shown as below:

During training, the randomly masked latent z0 is concatenated to each
noisy zt as condition. While during inference, the masked (latent) input is
also concatenated to the denoised zt as condition.

17SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction

周添文 Week32 Report 2025.2.27 63 / 76



4. Image to Video Generation

4.1 Injecting Image Condition
Another approach18 to injecting image condition is by directly substituting
the initial noise of first frame by the given input frame both in training and
inference, as shown below:

18ConsistI2V: Enhancing Visual Consistency for Image-to-Video Generation
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4. Image to Video Generation

4.2 Enhancing consistency with the condition image
Although the above pipelines successfully achieve the I2V task, better
generation result can be achieved by improving semantic and low-level
consistency with the input frame.
The core idea here is to fully leverage the information in the input image,
and effectively inject them into the generation process.
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4. Image to Video Generation

4.2 Enhancing consistency with the condition image
I2VGen-XL19 propose to first inject the high-level semantic features
extracted by a CLIP image encoder via a cross-attention into the
VideoLDM (as stated in Section 2.2).

However, such approach resulted in poor preservation of the content and
structure of the input image in the generated videos because the semantic
control is relatively weak, since CLIP is pretrained on aligning visual and
language features, disregards the perception of fine details in the images.

19I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models
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4. Image to Video Generation

4.2 Enhancing consistency with the condition image

Hence, the author further propose a detail encoder (D.Enc) and a global
encoder (G.Enc).
The D.Enc is selected to be a VQGAN Encoder that effectively extract the
low-level features of the input image, and the extracted features are
added to the initial noise of each frame.
The G.Enc is a multi-scale feature extractor, that assist the CLIP Encoder
in injecting semantic features to the LDM via cross-attention.
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5. SOTA Methods

Here, we introduce the SOTA methods that are widely adopted these days,
and explain how their underlying architecture is correlated to the ones we
have introduced. We will briefly introduce 5.1 CogVideoX, 5.2 Sora, 5.3
Wan-video, and how they are correlated to our previous introductions.
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5. SOTA Methods

5.1 CogVideoX20

CogVideoX is performed in the 3D temporal causal VAE latent space, as
we have described in Section 2.2, with a Transformer framework

20CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
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5. SOTA Methods

5.1 CogVideoX
The embedded text and video frames are then sent into the transformer
blocks. Although the decomposed attention in Section 1.2.2 can
significantly reduce computation burden, the author states that 3D full
attention can better capture the motion between frames than the
decomposed version.

周添文 Week32 Report 2025.2.27 70 / 76



5. SOTA Methods

5.1 CogVideoX
Further ablation studies also show that the 3D full attention significantly
increase the stability of the model training compared to the divided
time-space attention, as stated in Section 1.2.2.
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5. SOTA Methods

5.2 Wan-video
Wan-video21 is a DiT-based framework in VAE latent space. Similar to the
strategy in Section 5.1, it also implement a 3D temporal causal VAE for
video compression.

21Wan: Open and Advanced Large-Scale Video Generative Models
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5. SOTA Methods

5.2 Wan-video
The framework for Wan-video in T2V task is DiT, which we have
introduced in Section 1.3, but the approach to handle temporal
information is not specified in the technical report.
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5. SOTA Methods

5.2 Wan-video
As for the I2V task, Wan-video adopt the first kind approach (i.e. via
concatenating the binary mask, input frame with the initial noise) we have
introduced in Section 4.1.
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5. SOTA Methods

5.3 Sora22

Sora is performed also in a VAE latent space, but the specific type of VAE
is not stated in their technical report.
As we have stated in Section 1.3, Sora adopt a similar pipeline with Latte,
which employs 3D DiT as the backbone in the latent space. Such an
architecture yields better scalability, and can accept arbitrary sized input
image, compared to 3D UNet-based method that needs cropping and
resizing of the input frames.

22OpenAI, “Sora: Creating video from text.” https://openai.com/sora, 2024.
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5. SOTA Methods

5.3 Sora
Training on data in their native sizes and aspect ratios brings better
framing in the generated videos.

In the figure above, (b) provides a full video of the text description, while
the key concepts in (a) are partly cropped since the training data are also
cropped.
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5. SOTA Methods

5.3 Sora
The most naive strategy is to support dynamic sizes across different
batches by grouping samples into pre-defined ”buckets” with minimum
resizing or cropping. Within each batch, the resolution and aspect ratio
are fixed.
Another strategy is to pack multiple patches from different images
(latents) in a single sequence as shown below:
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